
NASA TECHNICAL TRANSLATIQN 
NASA TT F-I5947

ACCURATE MATHEMATJCAL MODEELTN OF PW POWER REGULATORS

R, Prajoux, J,C, Marpinard, and J, Jalade

Translation of Report, Laboratoire d'Automatique et d'Analyse des

systemes, C.N.R.S., Issued under Estec/Contract No. 2026
AK, May 1974, 25 pp.

..- TT--15947) ACCURT -ATOE 5ITCAL

RTIAL POT (Kanner(Leo) CSCL 09C G3/ 1.0 855 9

33 P BC $4-*5

NAT'QNAL AERONANTTICS AND SPACE ADMNTISTRATION
WASHINGTON D,C, 205146 SEPTEMBER 1974



STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.TT F-15947
4. Title and Subtitle 5. Report Date

ACCURATEGMATHEMATICAL MODEELING OF September 1974
PWM POWER REGULATORS: PARTIAL REPORT 6. Performing Organization Code

7 Author(s) 8. Performing Organization Report No.
. Prajoux, J.C. Marpinard, J. Jalade

Automatics and Systems Analysis Labora-
tory, National Scientific Research 10.WorkUnitNo.

Canter, Toulouse

9. Performing Organization Name and Address NAS c2Awy

Leo Kanner Associates 13. Typeof Report and Period Covered
Redwood City, CA 94063

Translation
12. Sponsoring Agency Name and Address Translation
National Aeronautics and Space Adminis-
tration, Washington, D.C. 20546 14. Sponsoring Agency Code

15. Supplementary Notes
Translation of Report, Laboratoire d'Automatique et d'Analyse
des Systemes, C.N.R.S., Issued under Estec/Contract No.
2026 AK, May 1974, 25 pp.

16. Abstract
A method is described which makes it possible to put the
dynamic behavior of PWM converters into equation form and
to determine their pulsed transmittance for any given
structure or mode of pperation. Simplifications for prac-
tical application of the method are performed a posteriori
to clarify their range.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Unclassified-Unlimited

19. Security Classif. (of this report) 20. Security Clossif. (of this page) 21. No. of Pages 22. Price :"

Unclassified Unclassifiedc 31

NASA-HQ



ACCURATE MATHEMATICAL VIODELLNG OF PWM ~O EE EQULATORS

R, Prajoux, ,C, Marpinard and J. Talade

Automatics and Systems Analysis Laboratory
National Scientific Research Center, Toulouse

General Remarks

The increasingly widespread use of regulator loop PWM con- / *

verters has led to consideration of the problem of the dynamic

stability of the looped system.

Since this type of system is a discrete non-linear system,

various approaches have been taken in attempting to analyze its

operation.

The principal work in this area has made use of:

e- continub~s linear approximation El];

-- the first harmonic method [2];

,- the phase plane method with possible linearization by

bits [3].

These methods have the advantages of being relatively simple

and of using the results of continuous linear servo theory, but, by

failing to take the discreteness of the system into account, they

do not allow for fine analysis of its behavior, Intorder to move

in closer to reality, therefore, the method of the recurrence re-

lated to the system may be usedd 147', This method offers the

advantage of describing 'tstrbong. signal' behavior; on the other

*Slash marks in the margin indicate a new page in the foreign text.



hand, it is poorly sujited for synthesis and quickly becomes

relatively cumbersome, especially if the order of the system in,

creases,

Small signal analysis, using a z transform, for example,

makes it possible,ttaking the discrete nature of, the system into

account, to describe not only the local stability but also the

transient response, while at the same time placing the main

parameters 6fl the system in condensed letter form.

Let G(p) (Fig. 1) represent the transmittance of a given

continuous linear system T. If this system is subjected to a

sample input e*Ct), its z transmittance, G (z),Iis defined in such

a way that:

S (z) = G (z) E (Z)

One of the forms of G (z is known to be:

c-n
(z) =  g (n T) . z-n (1)

n=O

g (t) r pulse respons'e ()

Now let T1 represent a continuous or non-continuous linear

11-

system. If Tr is such that its discrete pulse response gl(n T)
is:

g1(4 T) = g(n T),

its z transmittance G1 (z sis:

i (z) -- G (z)

As a result, if TI is subjected to the discr'ete input E (z,

the same di's'crete 'output SCzI is observed as, For T,

The discrete be'havior ' of' any lin'ear system of dis'cr'ete • pulse

response g(Cn T) is equivalent to that of a continuous linear



system of pulse response gClt,

If the behavior of the continuous system T is described by

the state equations;

= A Z +B u (t) (3)

s (t) cz

onehbas

g (n T)= C. en AT B C. 0(t) B

0 (T) = matrixqf ,discrete transition',state

u (h) s ()
G (p)

"T
a continu ;neQare_ .( )

a c.o i eoire

T * r

b discret \neatre

e(t) i e cI __sc

LL) / ( )

c(nT)

b dcCret n inealre

Fig, i.

Key: a, Linear continuous, b, Linear discrete.
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One may obtain QCz) for any, linear discrete system by the

procedure;

r
0(T) ---- g (n T) g (t) -- G (z)

B

The change from G(t) to G (z) may conveniently be performed with

the use of ordinary'transform tables.

We will now discuss determination of the equivalent con-

tinuous system of a PWM converter by the discrete pulse response

method.

Behavior of a Converter

Under certain operating conditions, the structure of the

electrical network representing the system to be studied may be

changed (blocking or saturation of transistors, 6urrent becoming

cancelled in one branch of the netwoek for .a fraction of the p

period, etc.). It follows that the continuous equations governing

the behavior of the different magnitudes must change over time,

and that the converter may not be characterized by a continuous

transmittance which is valid at any time. However, the converter

is still a discrete system, since:

-- it is controlled by a series of discrete instants tn;

-e the output of the system (assuming that the loop has been

opened) is also a series of discrete instants tTn (Fig, 2),

In addition, this will be a linear discrete system if its

weak signal behavior is beahg studied; the previously described

method may thus be applied to it.

4I



'Fig. 2.

Discrete Pulse Response of Systems with Changes in Structure

The period of operation is assumed to be divided into j time

intervals, each of these corresponding to a different structure of

the system.

During each of these intervals the behavior of the system is

that of a linear continuous system;:

Ln n. tn z  t-n=n

The switching instants tn, which'by definition are control

instants, are determined in closed loop cpnfiguration by an

equation of the type:

gn (Z) = a(t ) with Z = Z(t ).
-n n -- n n

when a coincidence hodulator is involved.

With an open loop, the instants defined in this manner are

the t' ,n the tn instants being by definition known a priori.

The switching instants tni within the period It , t +

are defined by equations of thi type;

h CZ = 0 with Z = ZCt
-ni -ni t ni

5



These will be termed' itr'ucture 'chahge fin'tants,

"For the j succeps-zve states, the state equations of the

system Ccf. that of 'Fig, 3, for example are in the form:

Z= A Z+B u for t (t t
Sn n

Z= A Z + B U for t t(t
2 21 n2S--------------

Sn(j-1) < t tn+ 1
and

S C Z for any value of t

The general solution for a given structure k is in the form:

Z (t) = k(t-t 0 (t 0 )+ 0 k (t- 1).Bk.u ()). dX\

-"with 0
A(t-t

0)
k (t-t 0) = e

that is:

Z(t) = k t)k (-t0). Z(t0 )+ k( ).Bk.u() dX (7)k0 o t

If the state vector ZCt) is considered only at switching

instants, that is, ZCt ) and ZCtn), this state, vector necessarily

does not constitute 'a' d iscrete stat'e; v'e yctor, ,For example, the

result of having a Z such that

h'CZ . = 0-ni



Sa Coar e.

PWM
-b VR Consigne

c -Amnpl'i cateur correcteur

VD d Hort o(e

E I

d dlorloe I I

Fig, 3.
Key: a. Load.!

b. V mandatory instruction.
c. Correcter amplifier.
d. Clock.

is that, knowing only Zni, it is not possible to determine tni.

In order to have a discrete state vector, in general one will

consider the ,tate yector ZCt) at switching instants t or tni in
n n

continuous operation, even in disturbed operation, Assuming,

ZCt) = fi jj for tni < t < tn i+l)

7



with fe Ctl defined f or t' A t. the discreete ptate. yector of the

disturbed 9yte~-r ay be properly, represente-d by;

".Ct ni,ni E-1 ni

Thus for the component Z of the state vector Z, we have

the notation given in Fig. 4.

I de I dt )" "

nZ).i.(t ) , er

ae.

Fig. 4.

Key; a. Continuous operation,
b. Disturbed operation.

With this notation:

n(i+l) (i+1) n (i+ (i+ 1)(-ni) + (8)
tO
n (i+1)

n(i+1) (- i ) B(i+1) . u ( ) . dto(+

ni

8



tn 0i+l) being the switching instant of order i + 1 in the interr

val Itn tCn+l1] calculated for undisturbed operation,

In this expression, tni and Zni Ca switching instant of order

i in disturbed operation and the state vector at this instant in

disturbed operation, respectively) are functions of Z ni. One

may therefore write:

dZ d dt-n(i+l) 0 ( 0 oo (i+)(-t ni ni
di+1 n(i+l) -ni d

dZ dt . dZ
Sni ni -- ni

dZ dt
0 (-t ) + (-t n ) B i u (t .)
i+1 I ni (i+ 1) ni (i+1) ni

dZ- . dZ
- ni -ni

This general equatiob holds true no matter what the amplitude

of the disturbance may be provided that the same qualitative

behavior persists (number of structure remaining unchanged). Ihi

the hypothesis of weak signal behavior over a span of continuous

operation, this expression becomes, all computations performed

(cf. App. 1):

0-n(1 ) 0 0 dZ dZ ni (10)
( (i+1) .dt 0- dt 0+ 0

dZ t . t . IdZ.Sni n ni t ni
- nn

with - 0- 0
0 =0 (t -t )(i+1) (i+1) n (i+l) ni

This equation is of the form;
--- 

U

-n (i+1) -0 i K (11)
dZ

ni



One may now expre.p dntl dt which 1i in the form;

dz dZ 0 dZ 0 dZ 0 dZnl 0
Sn+1 _- n+1 - n(j- 1 ) - n2... ( (12)

dtn dZ dZ dZ dtn(j-1) - n(j-2) n

The recurrent expression C11) furnishes all the initial

factors of the product, and this expr esiofi :is-obtaied- by deriv-

ing Eq. (8), in which i = 1:

dZnl 0 [d 1 (-tn) dZ
d = (t ) Z + 0 _t (13)

dt 1( t n 1 dt -- n+ 1 n dt t
n n n

- 1 (-t n).B 1 u (tn)

that is, all computations performed and taking the hypothesis of

weak signals into account;

dZ 0 0 dZ dZ

n

This is in the form:

dZ 0
d nl, O (15)

dt dn

Eq, C12) may thus be written

dZ n+l o 0 K'

dt1 = 0jLKj. +. (j0-1 ) K(j- 2 )+ '. 20 K 1 +] 0 (16)
n

Moving on to the following periods, the general term of the

10



recurrence is in the form:;

dZ dZ dZ
- (n+k+1) - n+k+1 (n+k)1

dZ dZ dZ
dn+k (n+k)(j-1) (n+k)

All the factors of this product are independent of the rank

of the period under consideration, that is-

dZ (n-k+1) = 
+) 

K(j-1) '  
20  [K 0 +

dZ (18)
(n+k)

with k > 1.

Since the discrete pulse response is being sought, the pulse

being applied at instant t , one has:

dt
n + k

0 adK(19)
dZ 0

n+k

The discrete state transition matrix is thus:

dZ A 0 (20)-- n+k+1 6 0(T) O 01 0

dZ j ) . 1

- ,n+k

Since the disturbance is applied at instant tn, it should be
-nn

noted that, by the definition o" Z n, one has;

dZ

dt
n

11



and thus that:

a Z 0,
n

As a result, therefore:

dZ
S = - n +n = (mT).K' At mr).K'. t (21)

n+m dt n 0 n 0 n
n

The equivalent linear system is thus that of Fig. 5.

a t 9(mT) , Ko nrn

Fig. 5.

Using the diagonal form A(T) of 0(T), one has

0 = p. an. ) ., T .• • (22)

as a result of which

T)K' 0  (23)

C,D. is a line matrix which may be written as:

D .KI is a column matrix which may be written;

12



k1D .-i  K ' =

• 0

If xl' i2... are the characteristic values (assumed to be

distitct) of A(t), one has:

g (mT) =t 1 .dk 1  1m 2 . k2 2 +'. m> 0

a.T

Assuming A = ea , the continuous pulse response of the equivalent

continuous system is such that:

alt at
g( )=c .dk e + ce . k2- 2 + (24)

The z transmittance may thus easily be obtained with the use

of odifTary-'btable ±ithheu-form:

AV (z) --" "= (z) - G (z, 1) (25)

cG (z, 1)\is used rather thanG (z) to take into account the fact

that G(0) = 0; cf. Ref. 15])

Gain of the Coincidence Modulator

Let. E equal the control voltage of .the coincidence modulat-or

(Fig, 61.

13



L

Fig. 6,

Instant tn is determined by an equation in the form:

An Ctn) - VE(t n ) = 0.

Ithhas been shown in earlier work 15] that:

1
tn dAdV AV (t ) (26)

n E
dt dt

n n

At the limit, one has:

AV E (tn ) = AVE (t )

Using the notation

M dA dV (27)

dt dt
t t
n n

on eh s:

Atn M AVE n 
(28)

14



and the block diagram of the converter is as follows;

\ R G M Gi14)

GC = Const. being the gain of the correcter amplifier.

Fig, 7.

Application to Boost

Let us consider the converter below, for which I and V are

chosen as components df the state vector Z:

E c V
T C

Fig. 8.

Key: a. Mean V = V
O

The output with which we are concerned is the voltage V(t); thus

vt =C z= [o 1] z

Let us assume that the width modulation is performed by means

of a sawtooth current of amplitude A, that is;

15



AOCt I A - C29)
T

by a coincidence modulator, and that the correcter amplifier is

a simple amplifier of gain GCO

0 n T I n+j

'Fig. 9.

Discontinuous Conduction Operation

During one clock period the system undergoes two changes in

structure at tnl and tn2'

Hiorloe a HorIoge

M c7 t

0 t t 1  ta t~ t(n)A Lrn+(n4 )z bn 4 Z

Key; a, Clock,

It is assumed that the PWM acts at instants tn, tn+l... and

16



that the clock acts at instants tn2p t l)2'.,

The state equations of the system ar'e:

0 -L
Z A + B E = Z+ E

1 1

for. t ( t t
n n1

0 0 0

ZA Z+ B E= Z+ E
- 2 2 L- [ 0

RC

for- tnl t (tn2

(30)

v = CZ =  oI O Vt

i = c 1 z =Li o] zzJ

17
17



As a result;

0111 112

0 =e

L 121 0122 .

t I t
2RC 2 RC

e cos (Wt - arc tg ) - e sin ~ t (31)
\LCu2 2RCW L

t t
ij . . . ..

1 2RC1 2RC1
Cu esinu)t - e cos (W t +are tnR )

LLC 0)

with
2 1 12 LC 4H 2 2

and

02 = e (32)

RC

0 e

Given these conditions, it follows that:

d: La = d (t d)[ d
3 dj

n n

IM
Since , (tn) V , it may be determined from this that;

18



I 0

K'0 [3- [Al M L

C C~

dZ dt
n2 = o  -dn2dodt o i + Ano ol I1 d 11 

dZ 2 (t IZ) ( dZSn1 n1 -dC n1

. dt 0 
V n1

=2 V(t ,

02 (t t ,

7 -0 1 -0 e 0 1 -0 e

d Zthus
n+1 dZ7 d'9

(3 dt +Zn2 n2 dZ
n 2 - n2

-0
Since the clock acts at tn2 it follows that d 7,

and thus, - n2

19



dZ 3  [
n3 3 (tC tc (35

dZ n 2  RC

One also has:
dZdZ (n+k)l

dZ n + k

from which:

dZ (36)

dn+k+l 03 (tc) 02 (te [ 1 (td) (T)
dZn + k 0 1

that is:

0 0 0 0 11 12
O(T)= t-+t t +t

e 0121(tdd e 0122 (td) "21 022

Since the characteristic values of 0(T) are 0 and 022) placing

the matrices in diagon&l form, it follows that;

20



V

1 0 1 0 0 1 0

n+k n
21 k 21 M

022 22 '22 C
(38)

0k 021 0o M
22 2 2  L C n

The pulse response of the equivalent linear system,aAll

computations performed, is therefore:

V Si- t-d -wt

( cos(td +arc tan- 1 c,rLd 2CRQW (39)

td 1 cos( td +are ta
RC T2RC T / 2 . '

e LC

in the form g(t) = G e-

The discontinuous conduction boost thus behaves as a first

order system.

Finally, the pulsed transmittance of the system is:

-aT

G (z, 1) = G -aT (40)
z-e

resulting in the characteristic equation;

21



-aT (41)
z-e (1 - GC GM  ) G )  0

Note: Taking into account the order of magnitude of the

parameters encountered in practice, it may easily be shown that:

GB  > 0

a >0

The z pole for a closed loop is:

z1 e-aT (1 - GC GM GB)

One has

- 1 < z1 < + 1 if one has (GC GM GB ) > 0:

aT
G C G < 1+ ae

The transient behavior is better if zl = 0, that is, if:

GC GM GB = 1

Numerical Example

.LetU'i the "boost" regulator of Fig. 8 be such that:

-5
T 10 s

-5
L 210 HI

-4
C 410- 4 F

R = 2-0-

V0 = 28 V

E = 20V

22



With these yalue- the regulator runctons in discontinuous

conduction, Thus

1) - C# 11, 200
LC 2 2 LC

4RC

The system may easily be set up so that tc / 2.83 Psec

td 7 7.07 psec

t 0.1 Psec

from which, applying Eq. (39):

GB / 17,740

In addition, noting that

-aT 22 (T)

one has

eaT / 0.995

One has:

0 0 1 E

GMM L

dt i dt RtA t-
n n

0 - V 0J

from which

M
A C [R b dV
T C dt t dt t

23



Since YR = Const,,

G =

A V0
T C RC

and as a result

GC M V
A 0

GC.T RC

The z pole for a closed loop is therefore

G
-aT B

S=e (1-
A 0

GCT RC

GC

Fig. 10 shows the variations in zl as a function of - for
A

different values of the load corresponding to Imax, Imax/2 and

Ima x /1 0.

24



a Rocine dc e ' equa ion
cornc e r .1s ic ue

R= 200oo-

A

2 4 6 ~ 8 40

Fig l O. l.

Fig. 10,

Key: a. Root zI of characteristic equation.

Conclusion

The method which has just been described makes it possible

to put the dynamic behavior of PWM converters in equation form

systematically and ibrf roblenimetcially and to deterrhine their

25



pulsed transmittance for any, given structure of mode of operation.

The simplifications which may be made for practical use

are performed a posteriori and their range is thus quite clear.

The various quantities which may be subsumed by gains and

which occur in the equations may be determined either experi-

mentally or by computation.

26
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APPENDTX 1. Computation of dZn (i.+1)/dZ ni

Since:
d0i Ait A t

At Ae .e Alt A

Eq. (9) may be written:

dZ n(i+l) dt dZ. dt
dZ i+1 ni+) - tni) - Ai+1'i -i Bi+ u(t ni

ni dZ ni dni dZn

that is, over a span of continuous operation:

- n(i+1) a . dt d dZt ni \
* ( +) U+1)Z ni + i dtni-

dZni dZ dZdZ o i+1) 'tni d
- ni 0 ni 0 -Z ni tt toni ni ni

with 0 0 0
0 +1) +1) (t ni+ ) ni)

Noting that:

Z 0 = A() Z + B .u(t
dtt ni A[i+1) ni Bi+l) ni

one has-
dZ d dt ZSni+) Z ni ni

U ( i + 1 ) * *( d Z i
dZ dt + dZ dZ

ni t t
dt dZ ni ni

ni --ni

Compipaihz dZ and dZ ni  separately (Appendices 2 and

3), this equation may be written:

28



dZ o d dZ dtn(i+1) -+ - ni-

dZ t 0 0dt 0+ d-i ni t ni
ni

29



Idt /dZ "APENDTX 2. Computation of ni / n

In the vicinity of tni , at any given instant t one has-

fi(t = Oit-t n Zni o 0 (t- X'a uX d

t ni

In addition, the equation:

hi (Z .) = 0

defining the switching instant tni becomes:

C *iZ[t , I . = 0
1 nis1 ni

thatis, differentiating:

" F fi dtni + -fi = 0
Ci *

Stn dZ n Z

from which one may derive:

dt -Cni -iz-ni

dZ ni Ci n
6 tni

-C 1(t ni-t nii i n ni

C 1 . . i(tni-t .Bi.u(tni Ji. 1 nint - ni+ ( ni n

Knowing that 01(0)= over a span of continuous operation,
this equation amounts to;

'dt - Ci

dZ o .dZ
t ni ni

30



APPENDTX 3. Computation d-ni dZ-ni

In the vicinity of tn at any giyen instant t one has;

fi ([t] = t-t ni .Z ni + 0i[t-X .Bi.ul\.d

from which:

dZ dft) d 0 t -t . dt
-dZi dfi[t d [tn ni Z ni +0 it -t

= Z i ni ni)S * - ni ~"
dZ dZ dt dZ
-ni -ni ni ni

Sdt
+ ( tni-t )'B ut .[tn

I ni n i ni n
dZ

since:

0 (0)=-a

0

d 0 [t ni-t i]
1. n. n. = A Oft -t

A1i ni ni
dt
ni

Over continuous operation, the result is that:

*dZ_ni  t. dtn
dZ - Ai'.Z ni + B.u(tni] --- n
dZ ndZ

ni

that is: -

dZ. i  dZ dtni

dZ ni dt 0 dZ
-- n. . t -ni
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